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Abstract

Two new analytical formulations of the acoustic pressure gradient have been devel-
oped and implemented in the PSU-WOPWOP rotor noise prediction code. The pres-
sure gradient can be used to solve the boundary condition for scattering problems
and it is a key aspect to solve acoustic scattering problems. The first formulation
is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H ) equation.
This formulation has a form involving the observer time differentiation outside the
integrals. In the second formulation, the time differentiation is taken inside the in-
tegrals analytically. This formulation avoids the numerical time differentiation with
respect to the observer time, which is computationally more efficient. The acoustic
pressure gradient predicted by these new formulations is validated through compar-
ison with available exact solutions for a stationary and moving monopole sources.
The agreement between the predictions and exact solutions is excellent. The for-
mulations are applied to the rotor noise problems for two model rotors. A purely
numerical approach is compared with the analytical formulations. The agreement
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between the analytical formulations and the numerical method is excellent for both
stationary and moving observer cases.

Key words: pressure gradient, acoustic scattering, rotor noise, analytical

formulation, Ffowcs Williams-Hawkings equation, Farassat’s formulation 1A

1 Introduction

Acoustic scattering of the noise generated by rotating blades is an area of re-

search that is not well developed. For example, a helicopter fuselage, a tiltro-

tor wing, or the duct surrounding a fan, each may substantially modify the

acoustic signal that arrives at an arbitrary observer location. Such a modifi-

cation would change both the magnitude and directivity of the acoustic signal

from what would be observed for an isolated rotor. The effect of a fuselage on

the noise field generated by a rotating point source was demonstrated by Atalla

and Glegg [1,2] using a ray-acoustics approach. Laik and Morris [3] showed a

direct simulation of acoustic scattering by two and three dimensional bodies

using an extension of the impedance mismatch method.

Tools exist for predicting fan noise scattering in turbofan engines, but only lim-

ited work has been done on the acoustic scattering of rotor noise by short ducts

(i.e., ducted tail rotors; ducted propellers for compound rotorcraft; ducted fans

in UAVs, etc.) The various numerical approaches [4–6] to solve the acoustic

scattering problem use the acoustic velocity on a scattering surface as a bound-
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ary condition. For example, a rigid surface requires either the satisfaction of

the impenetrability condition on the surface or zero normal acoustic velocity

relative to the scattering surface. Most conventional acoustic codes compute

acoustic pressure at an observer, not the acoustic velocity, but the gradient of

the acoustic pressure is related to the acoustic velocity through the linearized

momentum equation. As result, the boundary condition for the stationary

scattering surface can be written ∇p′s · n = −∇p′i · n, where p′i is the inci-

dent acoustic pressure and p′s is the scattered pressure. The calculation of the

acoustic pressure gradient is, therefore, a key aspect in solving acoustic scatter-

ing problems. A numerical evaluation of the pressure gradient, which requires

evaluation of the spatial derivative of acoustic pressure with respect to each

direction, is the simplest way to calculate the pressure gradient on the surface.

Nevertheless, it is computationally expensive. Therefore, it is not practical to

calculate the pressure gradient numerically for a realistic helicopter configu-

ration, where the scattering computation may require the acoustic pressure

gradient at thousands or even tens of thousands of collocation points on the

scattering surface. Furthermore, for the complicated source (rotating blades)

and scattering surfaces (complete helicopter configuration), it is not easy to

obtain the pressure gradient numerically. Therefore, it is important to develop

an analytical formulation for the pressure gradient to enable routine acoustic

scattering predictions.

2 Research objective

The Ffowcs Williams-Hawking (FW-H ) equation [7] is a powerful tool to solve

acoustic propagation from arbitrary moving sources such as rotating blades. In
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this paper, analytic formulations for the pressure gradient are derived starting

with the FW-H equation for general moving sources and eventually applied to

rotor noise.

The analytical formulations have several distinct advantages in terms of nu-

merical computation. First, no additional input data is needed to predict the

acoustic pressure gradient beyond what is already required to predict acoustic

pressure (or at most, numerical differentiation of the input data). Second, the

retarded time algorithms that will be used have been refined and thoroughly

tested in various numerical implementations of formulation 1A, which is a

retarded-time integral representation of the solution of the FW-H equation.

Finally, by computing the acoustic pressure gradient analytically, rather than

using a purely numerical approach, significant computation savings (in terms

of computer run time and memory) and increased robustness are expected.

Furthermore, the computation of the acoustic pressure from the isolated rotor

can be computed concurrently with the acoustic pressure gradient.

The goals of this paper are as follows:

(1) Develop a computationally efficient analytical formulation for the acoustic

pressure gradient to provide accurate input data for the boundary con-

dition for the scattering problems

(2) Validate the formulation by comparison with available exact solutions

(3) Apply the formulation to the rotor noise cases
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3 Acoustic pressure gradient formulations

The PSU-WOPWOP rotor noise prediction code is used in this work to predict

the rotor noise (acoustic pressure), as well as the gradient of the acoustic pres-

sure on the scattering body. The PSU-WOPWOP code is based on Farassat’s

formulation 1A [11,12]. A brief review is given in the next section.

3.1 Formulation 1A

Farassat’s formulation 1A [11,12] is an integral representation of the solution

to the FW-H equation, without the quadrupole source term. It is a retarded-

time formulation, which can be written as

p′(x, t) = p′T (x, t) + p′L(x, t), (1)

where p′, p′T , and p′L denote the acoustic pressure, and the monopole source,

and the dipole source. When the acoustic data surface coincides to the actual

impenetrable surface, the last two terms become the thickness and loading

components of the acoustic pressure, respectively. The monopole noise contri-

bution p′T can be written as

4πp′T (x, t) =
∫

f=0

[
ρ0(U̇n + Uṅ)

r(1−Mr)2

]

ret

dS

+
∫

f=0

[
ρ0Un(rṀr + c(Mr −M2))

r2(1−Mr)3

]

ret

dS,

(2)
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while the dipole noise contribution p′L is written as

4πp′L(x, t) =
1

c

∫

f=0

[
L̇r

r(1−Mr)2

]

ret

dS +
∫

f=0

[
Lr − LM

r2(1−Mr)2

]

ret

dS

+
1

c

∫

f=0


Lr

(
rṀr + c(Mr −M2)

)

r2(1−Mr)3




ret

dS,

(3)

where (x, t) and (y, τ) are the observer and source space-time variables, re-

spectively, r = |x−y| and c is the speed of sound in the undisturbed medium.

The data surface is described implicitly by the equation f(y, τ) = 0, where

f(y, τ) is defined in such a way that ∇f = n̂, which is the unit outward nor-

mal to the data surface with components ni. The density of the undisturbed

medium is ρ0. In Eqs. (2) and (3) the subscripts r, n and M imply the dot

product of the vector with either the unit vector in the radiation direction r̂,

outward normal vector n̂ to the surface f = 0, or the surface Mach number

M, respectively. The dot over a variable indicates source time differentiation.

The variables Ui and Li are defined by

Ui = [1− (ρ/ρ0)]vi + (ρui/ρ0), (4)

Li = Pijn̂j + ρui(un − vn), (5)

where ui are the components of the local flow velocity vector and vi are the

components of the local blade surface velocity vector and Pij is the compressive

stress tensor. Eqs. (4) and (5) are the form used for a permeable surface, which

is useful if the flow field around the rotor blades becomes transonic—as is the

case for high-speed-impulsive noise. Eqs. (1)–(3) omit the quadrupole term in

the FW-H equation, so all significant nonlinear sources should be contained

within a permeable surface. This enables the inclusion of the contribution of

those sources without carrying out a volume integration. For an impermeable

surface, such as the actual blade surface, Ui = vi and Li = Pijn̂j.
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Formulation G1

Taking the gradient of Eqs. (2) and (3) directly involves complicated algebraic

manipulations. It is easier to start with the partial differential equation form of

the FW-H equation and then use the free-space Green’s function to derive the

new integral formulation. Details of this approach can be found in reference

13. In this paper, the formulation is revisited with slightly different notation.

The acoustic pressure gradient can be found by taking the gradient of the

FW-H monopole and dipole noise terms (neglecting the quadrupole source).

The gradient of Eq. (1) is

∇p′ = ∇p′T +∇p′L, (6)

The next step is to find the acoustic pressure gradient of the monopole and

dipole noise sources. The governing equation for the monopole noise is

22p′T =
∂

∂t
[ρoUnδ(f)], (7)

where δ(f) is the Dirac delta function with support on the data surface f = 0.

Using the free-space Green’s function δ(g)/4πr, where g = τ − t + r/c, the

monopole component of pressure can be expressed as

4πp′T (x, t) =
∂

∂t

t∫

−∞

∞∫

−∞

ρ0Un

r
δ(f)δ(g)dydτ, (8)

Taking the gradient of Eq. (8) yields

4π∇p′T (x, t) = ∇ ∂

∂t

t∫

−∞

∞∫

−∞

ρ0Un

r
δ(f)δ(g)dydτ

=
∂

∂t

t∫

−∞

∞∫

−∞
ρ0Unδ(f)∇x(

δ(g)

r
)dydτ,

(9)
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where the symbol ∇x stands for gradient operator with respect to the observer

variable x. The spatial gradient operator can replaced by a time derivative

using the relation

∇x(
δ(g)

r
) = −1

c

∂

∂t

(
r̂δ(g)

r

)
− r̂δ(g)

r2
. (10)

Combining Eqs. (9) and (10) yields

4π∇p′T (x, t) =− ∂

∂t

(
1

c

∂

∂t

t∫

−∞

∞∫

−∞

r̂ρ0Un

r
δ(f)δ(g)dydτ

+

t∫

−∞

∞∫

−∞

r̂ρ0Un

r2
δ(f)δ(g)dydτ

)
.

(11)

Using generalized function theory and geometry [14–16] – and following the

same steps Farassat used in deriving formulation 1A – the gradient of the

monopole component of the acoustic pressure is found to be

4π∇p′T (x, t) = − ∂

∂t

(
1

c

∂

∂t

∫

f=0

[
r̂ρ0Un

r(1−Mr)

]

ret

dS

+
∫

f=0

[
r̂ρ0Un

r2(1−Mr)

]

ret

dS

)

= −∂E1

∂t
.

(12)

By recalling that

∂

∂t
[. . .]

∣∣∣∣
x

=

[
1

1−Mr

∂

∂τ
[. . .]

∣∣∣∣
x

]

ret

, (13)

and

∂r̂

∂τ
=

c

r
(Mrr̂−M), (14)

it can be easily shown that

E1 =
1

c

∫

f=0

[r̂ET ]retdS +
∫

f=0

[
(r̂−M)ρ0Un

r2(1−Mr)2

]

ret

dS, (15)

where

ET =

[
ρ0(U̇n + Uṅ)

r(1−Mr)2

]

ret

+

[
ρ0Un(rṀr + c(Mr −M2)

r2(1−Mr)3

]

ret

, (16)
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is the combined monopole noise integrand in formulation 1A. Hence, it is al-

ready available in the noise prediction code. Finally, the monopole component

of the acoustic pressure gradient can be written

4π∇p′T (x, t) = − ∂

∂t





1

c

∫

f=0

[r̂ET ]ret dS +
∫

f=0

[
(r−M)ρ0Un

r2(1−Mr)2

]

ret

dS





. (17)

The observer time derivative of the two integrals can be determined numeri-

cally.

The derivation of the gradient of the dipole noise component of the acoustic

pressure follows the same procedure as used in the monopole noise noise com-

ponent. The governing equation for the dipole noise is written as

22p′L = −∇ · [Lδ(f)], (18)

thus the dipole component of acoustic pressure is

4πp′L(x, t) = −∇ ·
t∫

−∞

∞∫

−∞

L

r
δ(f)δ(g)dydτ

= −
t∫

−∞

∞∫

−∞
δ(f)L · ∇x

(
δ(g)

r
dydτ

)
.

(19)

Using Eq. (10) in the previous integral yields

4πp′L(x, t) =
1

c

∂

∂t

t∫

−∞

∞∫

−∞

Lr

r
δ(f)δ(g)dydτ +

t∫

−∞

∞∫

−∞

Lr

r2
δ(f)δ(g)dydτ, (20)

Then if the gradient of the dipole component of acoustic pressure is taken, the

result is

4π∇p′L(x, t) =
1

c

∂

∂t

t∫

−∞

∞∫

−∞
δ(f)L · ∇x

(
r̂δ(g)

r

)
dydτ

+

t∫

−∞

∞∫

−∞
δ(f)L · ∇x

(
r̂δ(g)

r2

)
dydτ.

(21)

Note that the observer and the source space-time variables are independent
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because none of the Dirac delta functions have been used yet in the integration.

This approach makes it easy to interpret the differential operators. Had the

integrated results been used, heavy algebraic manipulations would be needed

and the differential operators would require careful interpretation.

Using the following relations

L · ∇x

(
r̂δ(g)

r

)
= L · ∇x

(
r̂

r

)
δ(g) +

Lr r̂

cr
δ′(g)

=
L− 2Lr r̂

r2
δ(g)− Lr r̂

cr

∂

∂t
δ(g),

(22)

L · ∇x

(
r̂δ(g)

r2

)
= L · ∇x

(
r̂

r2

)
δ(g) +

Lr r̂

cr2
δ′(g)

=
L− 3 Lr r̂

r3
δ(g)− Lr r̂

cr2

∂

∂t
δ(g),

(23)

leads to

4π∇p′L(x, t) =
1

c

∂

∂t

{
−1

c

∂

∂t

t∫

−∞

∞∫

−∞

Lr r̂

r
δ(f)δ(g)dydτ

+

t∫

−∞

∞∫

−∞

(L− 3 Lr r̂)

r2
δ(f)δ(g)dydτ

}

+

t∫

−∞

∞∫

−∞

(L− 3 Lr r̂)

r3
δ(f)δ(g)dydτ.

(24)

Again following the procedure used for formulation 1A, Eq. (24) can be rewrit-

ten as

4π∇p′L(x, t) =
1

c

∂

∂t

{
−1

c

∫

f=0

[
1

1−Mr

∂

∂τ

(
Lr r̂

r(1−Mr)

)]

ret

dS

+
∫

f=0

[
L− 3 Lr r̂

r2(1−Mr)

]

ret

dS

}

+
∫

f=0

[
L− 3 Lr r̂

r3(1−Mr)

]

ret

dS.

(25)

Simplifying Eq. (25) gives the gradient of the dipole noise component of the
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acoustic pressure

4π∇p′L(x, t) =
1

c

∂

∂t

{
−

∫

f=0

[r̂EL]ret dS +
∫

f=0

[
L− Lrr̂

r2(1−Mr)

]

ret

dS

−
∫

f=0

[
Lrr̂− LrM

r2(1−Mr)2

]

ret

dS

}
+

∫

f=0

[
L− 3Lrr̂

r3(1−Mr)

]

ret

dS,

(26)

where EL is the combined dipole noise integrand in formulation 1A

EL =
1

c

[
L̇r

r(1−Mr)2

]

ret

+

[
Lr − LM

r2(1−Mr)2

]

ret

+
1

c

[
Lr (rṀr + c(Mr −M2))

r2(1−Mr)3

]

ret

.

(27)

Again, the observer time derivative in Eq. (26) needs to be taken numerically.

For convenience, Eqs. (17) and (26) are together referred to as formulation

G1. This notation parallels that used by Farassat for the monopole and dipole

formulation 1, which had a observer time derivative outside of the integrals.

Evaluation of the pressure gradient can now be completed with substantially

less computational effort than a direct numerical evaluation of the pressure

gradient.

Eqs. (17) and (26) have been implemented in the PSU-WOPWOP noise pre-

diction code to provide the acoustic pressure gradient at an arbitrary observer

location. The main challenge of this implementation is the calculation of ob-

server time derivative, ∂/∂t, of the integrals. Care must be taken to ensure

that the observer position x remains fixed during the calculation of these in-

tegrals. To simplify the algorithm description, the integrals which must be

differentiated, surrounded by the braces in Eq. (26), are represented by Q.

A second-order backward difference algorithm is used to compute the time

derivative. The general algorithm for the numerical calculation of ∂/∂t is as

follows:
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A. Pick τn – n indicates time step and τ represents the emission or retarded

time.

B. Compute yi (τ
n) – each source point is moving, thus at time n, the posi-

tion of the i-th source point is needed.

C. Save τn, yi (τ
n), velocity, acceleration, etc. for later use as the τn−1 and

τn−2 values once n has been incremented.

D. Compute x (tn) (based on yi (τ
n) and τn) – if x does not change (i.e.,

a stationary observer) , then the arrival time t is found explicitly by

t = τ + r/c; if the observer is moving, both the observer position and

arrival (observer) time must be determined implicitly at the same time.

E. Calculate Q (yi, τ
n;x (tn) , tnxn) ≡ Qn

n using velocity, acceleration etc. at

τn.

F. Compute tn−1
xn and tn−2

xn using τn−1 and τn−2 as follows:

i. tn−1
xn = τn−1 + |x (tn)− yi (τ

n−1)| /c,
ii. tn−2

xn = τn−2 + |x (tn)− yi (τ
n−2)| /c.

(If x is stationary, the calculation is simpler.)

G. Calculate Q
(
yn−1

i , τn−1;x (tn) , tn−1
xn

)
≡ Qn−1

n and Q
(
yn−2

i , τn−2;x (tn) , tn−2
xn

)
≡

Qn−2
n .

H. Calculate
∂Q

∂t
∼= Qn−2

n − (1 + α)2Qn−1
n + α(α + 2)Qn

n

α(1 + α)(tnn − tn−1
n )

where α =
tn−1
n − tn−2

n

tnn − tn−1
n

for a non-uniform time step.

I. Interpolate
∂Q

∂t
at t∗.

where τ denotes source time, t observer time, yi source vector, xi observer

vector, c speed of sound, n time index and t∗ is the specified observer time of

interest. It is apparent that this procedure is significantly more complicated

than computing the acoustic pressure. Nevertheless, the additional computa-

tional effort will be shown to be significantly less than a purely numerical
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differentiation of the acoustic pressure.

3.2 Formulation G1A

The primary drawback of formulation G1 is that numerical time differentiation

of the integrals is required. If the observer is stationary, then this requirement

is not a problem because the time history of the integrals can be easily differen-

tiated numerically. If the observer is moving with respect to the fluid, as in the

case of a wind-tunnel test, the situation becomes more complicated because

the formulation requires the observer to be stationary during the evaluation

of the integrals. Predictions with a moving observer are possible by adjusting

the observer position at each time in the acoustic-pressure time history; how-

ever, three evaluation of the integrals are needed to perform a second-order

difference approximation to the time derivatives at each observer time. These

extra integral evaluations become unnecessary if the time derivatives are taken

inside the integrals analytically.

Although the process of taking the observer time derivatives inside the inte-

grals and converting them to source time derivatives is not difficult, it is quite

tedious. The first step is to apply Eq. (13) and then evaluate the source time

derivatives that results. Some of the key source time derivatives, which are

the same as Farassat used in the derivation of formulation 1A, are expressed

as follows:

∂r̂

∂τ
=

c

r
(Mrr̂−M), (28)

∂r

∂τ
= −cMr, (29)
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∂

∂τ

(
1

r

)
= − 1

r2

∂r

∂τ
=

cMr

r2
, (30)

∂Mr

∂τ
=

c

r
(−M2 + M2

r ) + Ṁr, (31)

∂Lr

∂τ
= L̇r +

c

r
(MrLr − LM). (32)

Some new functions are introduced denoted by the following groups of vari-

ables:

W = rṀr + c(Mr −M2), (33)

Ẇ =
r2M̈r − 3crṀ ·M + c(rṀr + c(M2

r −M2))

r
, (34)

U(m,n) =
1

rm(1−Mr)n
, (35)

V (m,n) =
∂U(m,n)

∂τ
=

nrṀr + (n−m)cM2
r + mcMr − ncM2

rm+1(1−Mr)n+1
, (36)

or

V (m,n) = nWU(m + 1, n + 1) + c(m− n)MrU(m + 1, n). (37)

These relations will be used in the process of taking the observer time deriv-

atives inside the integrals in formulation G1.

Eqs. (17) and (26) are the starting point for the derivation of formulation

G1A. Converting the observer time derivative to a source time derivative and

using the new variables represented by Eqs. (34) and (35), Eqs. (17) and (26)

become

4π∇p′T (x, t) =− 1

c

∫

f=0

[
1

1−Mr

∂

∂τ

{
r̂(Q̇U(1, 2) + QWU(2, 3))

}]

ret
dS

−
∫

f=0

[
1

1−Mr

∂

∂τ

{
(r̂−M)QU(2, 2)

}]

ret
dS,

(38)
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4π∇p′L(x, t) =− 1

c

∫

f=0

[
1

1−Mr

∂

∂τ

{
r̂(

1

c
L̇rU(1, 2) + (Lr − LM)U(2, 2)

+
Lr

c
WU(2, 3))

}]

ret
dS

+
1

c

∫

f=0

[
1

1−Mr

∂

∂τ

{
(L− Lrr̂)U(2, 1)

}]

ret
dS

− 1

c

∫

f=0

[
1

1−Mr

∂

∂τ

{
Lr(r̂−M)U(2, 2)

}]

ret
dS

+
∫

f=0

[
(L− 3Lrr̂)U(3, 1)

]

ret
dS,

(39)

where ρ0Un is defined as Q.

Eqs. (38) and (39) can be written in a short hand notation for convenience

4π∇p′T (x, t) = I1 + I2, (40)

4π∇p′L(x, t) = I3 + I4 + I5 + I6, (41)

where I1 – I6 correspond to each of the integrals in Eqs. (38) and (39). Detailed

forms of I1 – I6 after performing the differentiation of variables with respect

to the source time are given in appendix A.

Eqs. (40) and (41), together with the definitions of I1 – I6, will be referred to as

formulation G1A and are the main result of this paper. The designation G1A

is intended to parallel that of Farassat’s formulation 1A, in which the observer

time derivative is taken analytically inside the monopole and dipole integrals.

Formulation G1A does not require numerical time differentiation of the inte-

grals, and, as a retarded-time formulation, is well suited for subsonic source

motion. Aside from the problem geometry, only the time-dependent input val-

ues or at most, numerical differentiation of them are required. Furthermore,

it will be demonstrated with numerical examples that formulation G1A re-

quires significantly less operations and computer memory than formulation

G1. This will be discussed in detail later. The reduction of computational cost

is important when the formulation is used for the scattering problem.
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It is worthwhile to point out possible numerical error sources in the developed

analytical formulations. Numerical errors can be associated with insufficient

temporal and spatial resolution of the source and a numerical evaluation of

integrals. An error analysis will be carried out in the following section. Other

than these error sources, no other numerical errors associated with wave prop-

agation, such as dissipation or dispersion errors that are important issues in

Computational Fluid Dynamics (CFD), are involved in the formulations be-

cause the solution obtained using the free-space Green’s function is exact at

the far field under the assumption of linear superposition.

4 Validation of the analytic formulations of the pressure gradient

The developed analytic formulations will be validated by comparison with

exact solutions of the pressure gradient for both stationary and moving mono-

pole sources. In the case of a moving source, both a stationary source in a

moving stream and a moving source in a stationary stream will be considered.

4.1 Validation case 1 : a stationary source

The first validation case is a stationary point monopole source problem. The

three-dimensional inhomogeneous wave equation is given

22p′(x, t) = q(x, t). (42)

A source which is concentrated at a point is given

q(x, t) = Q(t)δ(x). (43)
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For a point monopole source with a single frequency ω, the source is given:

q(x, t) = Aeiωtδ(x), (44)

where A is a complex constant.

The three-dimensional Green’s function gives the solution of the acoustic pres-

sure for a point monopole source located at the origin.

p′(r, t) =
Q(t− r/c)

4πr

=
Aeiω(t−r/c)

4πr
,

(45)

where r = |x− y| and t− r/c is called the retarded time.

Once the pressure is determined, the particle velocity can be calculated from it

using the linearized momentum equation. The radial component of the equa-

tion gives

ρ0
∂ur

∂t
= −∂p′

∂r
. (46)

The pressure gradient in the r direction is given by

∂p′

∂r
= − A

4π

{
iω

cr
+

1

r2

}
eiω(t−r/c). (47)

Substituting equation (47) into equation (46) gives

ur(r, t) =
A

4π(iwρ0)

{
iω

cr
+

1

r2

}
eiω(t−r/c). (48)

Eqs. (45) and (47) give the exact solutions of acoustic pressure and pressure

gradient at an observer point. In order to validate the pressure gradient for-

mulations implemented in PSU-WOPWOP, a permeable data surface surface

enclosing the point source is used. Eqs. (45) and (48) yield the variables Ui

and Li on the surface. In the prediction, A = 4π is used.
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The spherical permeable surface used has a radius of 0.5m and the polar

azimuthal angle θ and polar angle φ are discretized into 36 and 18 panels,

respectively.

Fig. 1 shows a comparison of the acoustic pressure at r = 10m for the exact

solution and prediction. Source frequency is ω = 10rad/s. The predicted result

agrees very well with the exact solution. The order of the error for the peak

value is less than 1%. This result demonstrates that the permeable surface

prediction is correct.

Fig. 2 shows a comparison of the acoustic pressure gradient for the exact

solution, the predictions with formulation G1 and G1A and the finite difference

method. It can be seen the predictions match extremely well with the exact

solution so that each line can barely be differentiated on this graph. This result

confirms that the analytical formulations of the pressure gradient can be used

to accurately compute the pressure gradient for a stationary source case.

Although we demonstrated that the analytical formulations are very success-

ful, numerical error associated with the grid resolution of the source needs to

be addressed. Figure 3 shows the pressure gradient prediction for the station-

ary case depending on the mesh points on the permeable surface. Three test

cases were used for the grid convergence test: 36×18 mesh points, 18×9 mesh

points, 9×4 mesh points. It was found that the numerical error caused by the

coarse grid resolution reduced the amplitude of the peaks.
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4.2 Validation case 2 : wind-tunnel case

The second validation problem is a “wind-tunnel case”, where the source is

stationary, but the flow is moving with a constant velocity of U . This test case

is for the validation of the pressure gradient formulations in a moving source

case.

The acoustic velocity potential for a stationary source in a uniform stream is

written
[ 1

c2

D2

Dt2
−∇2

]
φ′(x, t) = 0, (49)

where D/Dt is the material (or total) derivative operator and φ′(x, t) is the ve-

locity potential. The source and observer are stationary in a uniformly moving

stream with a Mach number M = U0/c.

The Green’s function for the convective wave equation for a harmonic source

gives the solution for the velocity potential. It is given by,

φ′(x, t) =
Aβ2

4πR̄
exp{ik[R̄−Mβ2(x− xs)]}exp{−ωt}, (50)

where

R̄ = β
√

β2(x− xs)2 + (y − ys)2 + (z − zs)2, (51)

and, β = 1/
√

1−M2. The retarded time is given by,

τ ∗ = t− R

c(1−M)2
(M cos Θ +

√
1−M2 sin2 Θ), (52)

where R =
√

(x− xs)2 + (y − ys)2 + (z − zs)2 and cos Θ = (x− xs)/R.

The acoustic particle velocity can be obtained by the gradient of the velocity

potential

v′(x, t) = ∇φ′(x, t). (53)
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The acoustic pressure is described by the unsteady Bernoulli equation

p′(x, t) = ρ0

(
iω − U0

∂

∂x

)
φ′(x, t). (54)

The exact solution for the acoustic pressure gradient with respect to the x, y

and z coordinates is given by,

∂p′

∂x
= ρ0

(
iω

∂φ′

∂x
− U0

∂2φ′

∂x2

)
, (55)

∂p′

∂y
= ρ0

(
iω

∂φ′

∂y
− U0

∂2φ′

∂x∂y

)
, (56)

∂p′

∂z
= ρ0

(
iω

∂φ′

∂z
− U0

∂2φ′

∂x∂z

)
. (57)

Terms that are necessary for calculating the pressure gradient are provided in

appendix B.

The procedure of making the pressure gradient predictions is similar to that

used for the stationary point monopole source. A spherical permeable surface

enclosing a point source is created and flow passes by the surface with Mach

number M. The pressure and velocity evaluated on the surface are passed to

PSU-WOPWOP and used for the prediction of the pressure gradient. Again,

A = 4π is used in this problem.

Fig. 4 shows a comparison of the acoustic pressure at a point observer of

(100.0, 0.0,−5.0) for the prediction and the exact solution for Mach number

M = 0.5 and M = 0.9 cases. The source frequency is ω = 10rad/s. The

agreement between the FW-H prediction and the exact solution is excellent

for both low and high Mach number cases. The order of the error for the peak

is less than 1% for both cases.

Fig. 5 shows a comparison of the acoustic pressure gradient for the exact
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solution, the predictions with formulation G1 and G1A and the finite difference

method. It can be seen the predictions match extremely well, such that the

exact solution so that each line can barely be distinguished on this graph.

In addition to validate the methodology, the result implies that the finite

difference method, which is a purely numerical method, can be used as a

baseline for the validation of the pressure gradient formulations when the

source motion is not linear and the exact solution for the pressure gradient is

not available.

Validation case 3 : a uniformly moving source

Now let us consider a monopole source with a strength of q moving uniformly

in the x−direction with a velocity U in a stationary fluid. The wave equation

for the acoustic pressure field generated by this moving point source is of the

form

22p′(x, t) =
∂

∂t
q(t)δ(x− Ut)δ(y)δ(z), (58)

where q(t) = Aeiωt. The linearized unsteady Bernoulli equation is given by

p′(x, t) = −ρ0
∂φ′

∂t
, (59)

where φ′ is the velocity potential. Defining ψ′ = −ρ0φ
′, one obtains

22ψ′(x, t) = q(t)δ(x− Ut)δ(y)δ(z). (60)

This equation can be solved in many different ways. Many researchers used a

linear transformation of coordinates analogous to a Lorentz transformation.

This is given in reference [17] in detail. This transformation enables the re-

duction of the problem to that of radiation from a stationary source, but it

involves complicated mathematical manipulations. In the present work, the
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solution of Eq. (60) is more easily derived by using Farassat’s formulation 1A

for the integral solution of the FW-H equation.

Using the free-space Green’s function and the properties of the δ function, the

solution of Eq. (60) becomes

ψ′(x, t) =
q(τ)

4πr(1−Mr)

∣∣∣∣∣
ret

, (61)

where q(τ) = Aexp(iωτ).

The pressure can be written as

p′ =
∂ψ′

∂t

=
1

1−Mr

∂

∂τ

[
q(τ)

4πr(1−Mr)

]

ret

=

[
q̇(τ)

4πr(1−Mr)2

]

ret

+

[
q(τ)(cMr − cM2)

4πr2(1−Mr)3

]

ret

.

(62)

Eq. (62) is equivalent to the monopole noise term of Farassat’s formulation

1A for a moving source with a constant velocity. The particle velocity is given

by the gradient of the velocity potential

v′(x, t) = ∇φ′(x, t) = −∇ψ′(x, t)

ρ0

, (63)

where

∇ψ′ =

[
Aiωq(τ)∇τ

4πr(1−Mr)

]

ret

+ q(τ)∇
{[

A

4πr(1−Mr)

]

ret

}
. (64)

The second part of Eq. (64) needs to be evaluated very carefully. It should be

noted that

∇
{[

A

4πr(1−Mr)

]

ret

}
6=

[
∇

{
A

4πr(1−Mr)

}]

ret

. (65)

Here the left hand side means that the gradient operator is applied after the

evaluation of the function at the retarded time. In contrast, the right hand

side of Eq. (65) is carried out before the retarded time is determined. This
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gives a wrong answer. To avoid making this mistake, it is useful to preform

the gradient operation before the retarded-time relation is applied (i.e., before

the δ(g) term in the free-space Green’s function is integrated). For this case of

a uniformly moving source, it is useful to express the denominator of Eq. (65)

in terms of the observer position, initial source position, and the velocity of

the source. In this form, one obtains

r(1−Mr) = c(t− τ)−M(x1 − Uτ)

=
√

(x− xs)2 + (1−M2){(y − ys)2 + (z − zs)2},
(66)

where x, y and z are the observer coordinates and xs, ys and zs are the initial

source coordinates. Now the problem is given in only x and t variables and

the explicit dependence on source space-time is eliminated. Now the second

part of Eq. (64) becomes

q(τ)∇




1

4π
√

(x− xs)2 + (1−M2){(y − ys)2 + (z − zs)2}





∣∣∣∣∣
t

. (67)

Once the exact solutions for the pressure and particle velocity are determined,

these data on the permeable surface are used to evaluate formulation G1 and

G1A in PSU-WOPWOP. The same permeable surface used with the previous

validation cases is used here and A = −4ρ0π is used to match the strength of

the monopole source with that for the wind-tunnel case.

Fig. 6 shows a comparison of the acoustic pressure at an observer located

(100.0, 0.0,−5.0) for both the prediction and the exact solution for Mach num-

ber M = 0.5 and M = 0.9 cases. The agreement between the FW-H prediction

and the exact solution is excellent for both low and high Mach number cases.

Again, the order of the error for the peak is less than 1%.

Fig. 7 shows a comparison of the acoustic pressure gradient for the exact solu-

23



tion, the predictions with formulations G1 and G1A and the finite difference

method. The derivation of the exact solution for the pressure gradient for a

moving source case requires heavy algebraic manipulations so the exact solu-

tion obtained from the validation case 2 (the moving stream case) is used since

both approaches give identical results. The predictions are again in excellent

agreement with the exact solution.

These results demonstrate that the pressure and pressure gradient obtained

from a stationary source in a moving stream are identical with those predicted

by a moving source in stationary fluid. The validation for a moving source

source is complete.

Fig. 8 shows the instantaneous pressure contour for a source wavelength λ =

2m and M = 0.5. The source is moving in the −x direction. The Doppler effect

of changing wavelength can be seen in the figure. Figs. 9–11 shows contours of

the pressure gradient. The contours of pressure gradient tend to lean toward

the direction of the source motion.

5 Application of the analytic formulations of the pressure gradient

to rotor noise

In this section, two representative calculations are performed to demonstrate

the capability of the new formulations and to provide some indication of the

efficiency and robustness of the formulations. The first case considers a model-

scale UH-1H rotor with untwisted blades operating in a non-lifting hover con-

dition. This test enables simple and fast calculation for both the pressure and

pressure gradient. The other test case is for the HART-I model rotor in a
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forward descent flight, which experiences blade-vortex-interaction (BVI) high

frequency loading on the blades (although the CFD solution does not fully

capture the BVI). Measured data is not available for the pressure gradient;

therefore, the predicted pressure-gradient time histories using formulations

G1 and G1A must be compared with a purely numerical calculation. The fi-

nite difference predictions are performed by computing the acoustic pressure

at several points nearby the observer location and then using a second-order

central finite difference in each of the three spatial directions.

5.1 Test case 1 : UH-1H model rotor

A model scale rotor test, conducted by Boxwell, Yu and Schmitz [18]. in 1978

and later repeated by Purcell [19] in 1988, has been selected for the validation

of the present analysis and code. The rotor was a one-seventh scale model of

a UH-1H main rotor with straight, untwisted blades. The model rotor had

an NACA 0012 airfoil section. The rotor radius R was 1.045 m with a chord

of 7.62 cm. The model was run at several high-speed hover conditions with

low thrust. The high-speed hover condition is not of particular interest for

the validation of the pressure gradient; therefore, a tip Mach number of 0.6

is selected for the test case. For the hover noise calculation, an Euler solution

reported by Baeder, Gallman and Yu [20,21] is used as input data. The Euler

calculation were performed on a C-H grid; only the lower half of the grid was

used in the CFD calculations by taking advantage of the symmetry of the

problem. The Euler calculations required approximately 80 min of CPU time

on a Cray Y-MP. Details of the Euler calculations can be found in references 20

and 22.
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Comparisons of the pressure gradient are made for an in-plane microphone

located 3.09R from the rotor hub for a stationary observer. Fig. 12 shows

the total acoustic pressure and the pressure gradient with respect to the x,

y, and z directions, respectively. The pressure gradient predicted by the two

analytical formulations are compared to that obtained by the finite difference

method. The agreement between the analytic formulations and the finite differ-

ence method is excellent for all components of the pressure gradient. A closer

examination reveals that the analytical formulations provide much smoother

results as compared to the finite difference method. The order of the error for

the peak is 0.1%.

5.2 Test Case 2: HART-I model rotor

The forward-flight capability of the new formulations and code is demon-

strated for a four-bladed rotor representative of the HART-I model-scale test.

This case focuses on unsteady blade loading and forward flight. The OVER-

FLOW CFD code was used to compute the unsteady flow field around the

rotor. [23,24] A C-mesh topology was been used for the grid with a total grid

system of 2.4 million points in the near-body region and 15.0 million points in

the off-body region – in the coarse grid case. The turbulence model used the

shear stress transport (SST) [25] k − ω by Menter. The rapid dissipation of

blade-vortex strength makes the prediction of blade-vortex interactions with

computational fluid dynamics(CFD) difficult. Although the CFD was not fully

able to capture the BVI loading on the blades—and hence the peaks of pre-

dicted noise were considerably underpredicted as shown in the references 23

and 24—the comparison of the new analytical formulations for pressure gra-
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dient with the finite difference method is still useful to demonstrate its imple-

mentation in PSU-WOPWOP.

As in the UH-1H examples, the finite difference result is compared to that of

analytic formulations to validate the newly developed formulations. For this

comparison, the observer is located below the rotor plane at a downstream

position on the retreating side of the rotor. The observer is in motion with

the rotor to simulate a wind-tunnel test. Although the absolute magnitude

of the pressure gradient is unknown, confidence in both the derivation and

implementation of the new formulations would be gained if all of the different

methods agree.

Fig. 13 shows the total acoustic pressure and a comparison of the pressure

gradient at a moving observer for the HART-I rotor. The analytical formula-

tions are in a good agreement with the finite difference method. Upon closer

inspection (not shown), the finite difference result contains a high frequency

“jitter” that is thought to be of numerical origin. The analytical formulations

do not exhibit the same “jitter.” In some other cases with a moving observer

(not shown) it was found that the acoustic pressure gradient predicted by for-

mulation G1 was sensitive to the method of computing the observer time and

position. This has not been studied extensively as formulation G1A does not

suffer in this regard, and also requires less computational effort.

Table 1 shows a comparison of computational times for formulation 1A (as a

reference), formulations G1A and G1, and the finite difference method. The

finite difference method requires 7 times as much time as formulation 1A but

formulation G1A only required 3 times as much computation time as formula-

tion 1A. Formulation G1 requires approximately 5 times as much computation
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time as formulation 1A or 60 percent more computation time than formulation

G1A. This demonstrates the significant computational savings of both of the

analytical formulations and the superiority of formulation G1A.

6 Concluding remarks

In this paper, two analytical formulations for the determination of the acoustic

pressure gradient have been developed and validated by comparison with avail-

able exact solutions for both stationary and moving point monopole sources.

It has been demonstrated that the analytical formulations agree very well with

the exact solution for three different cases. The fact that all three approaches

give essentially the same results – although they are quite different in ex-

pression and implementation – gives confidence that both the derivation and

implementation have been performed correctly. The formulations are applied

to rotor blades for both hovering and forward-flight conditions. The analytical

formulations eliminate numerical oscillations, which are present in the finite

difference method and result in very smooth predictions.

It has been found that formulation G1, which evaluates the observer time

differentiation of the integrals, is a relatively simple formulation but is some-

what more difficult to implement in PSU-WOPWOP due to the observer time

differentiation of the acoustic integrals. Furthermore, in at least one case, it

was found to be sensitive to the choice of numerical algorithm used to find

the observer time and location. In contrast, formulation G1A, which takes the

time derivatives inside the integrals, is a somewhat more complicated formu-

lation. Nevertheless, it yields improved computational efficiency and perhaps

robustness by avoiding the numerical time differentiation of the acoustic inte-
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grals. Numerical tests show that formulation G1A is the fastest and the most

efficient algorithm for computing the acoustic pressure gradient. This is im-

portant for use in calculation of the acoustic scattering, which may require

several thousand pressure gradient calculations at the collocation points on

the scattering body.

A Formulation G1A for the analytical pressure gradient

Five final equations of formulation G1A for the analytical pressure gradient

are given as follows:

I1 = −1

c

∫

f=0

[
r̂{Q̈U(1, 3) + (3Q̇W + QẆ )U(2, 4) + 3QW 2U(3, 5)}

− cM{Q̇U(2, 3) + QWU(3, 4)}
]

ret
dS,

(A.1)

I2 =
∫

f=0

[
(M− r̂)Q̇U(2, 3) + (−cMrr̂ + cM + rṀ)QU(3, 3)

+ 2(M− r̂)QWU(3, 4)
]

ret
dS,

(A.2)

I3 = − 1

c2

∫

f=0

[
r̂(L̈r + L̇ṙ)U(1, 3)

+ c{−ML̇r − (−L̇r + L̇M + LṀ)r̂}U(2, 3)

+ r̂{3L̇rW + LrẆ}U(2, 4)

+ c2{(2LrMr − LM(1 + Mr))r̂− (Lr − LM)M}U(3, 3)

+ c{(Lr(Mr + 2)− 3LM)W r̂− LrWM}U(3, 4)

+ 3LrW
2r̂U(3, 5)

]

ret
dS,

(A.3)
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I4 =
1

c

∫

f=0

[
(L̇− L̇rr̂)U(2, 2)

− c{(3LrMr − LM)r̂− LrM−MrL}U(3, 2)

+ (L− Lrr̂)WU(3, 3)
]

ret
dS,

(A.4)

I5 = −1

c

∫

f=0

[
{L̇r(r̂−M)− LrṀ}U(2, 3)

+ c{r̂(2LrMr − LM)−M(MrLr − LM + Lr)}U(3, 3)

+ 2Lr(r̂−M)WU(3, 4)
]

ret
dS,

(A.5)

I6 =
∫

f=0

[
(L− 3Lrr̂)U(3, 1)

]

ret
dS. (A.6)

Recall that for an impermeable surface,

Q = ρ0vn, (A.7)

L = Pijn̂j, (A.8)

and for a permeable surface,

Q = ρ0vn + ρ(un − vn), (A.9)

L = Pijn̂j + ρui(un − vn). (A.10)

Also note that a dot on the main variables does not imply differentiation of any

of the associated vectors implied by the subscripts. Subscripts other than i and

j are a shorthand for the inner product of the main quantity with the vector

represented by the subscript. The derivative of acceleration, which is called a

jerk, and second derivative of normal unit vector are evaluated numerically in

this work.
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B Exact solution for the pressure gradient for a moving stream

case

Terms that are necessary to evaluate the exact solution for the pressure gra-

dient for a moving stream case are given as follows:

∂φ′

∂x
= φ′

{
− 1

R̄

∂R̄

∂x
+ ik(

∂R̄

∂x
−Mγ2)

}
, (B.1)

∂φ′

∂y
= φ′

{
− 1

R̄

∂R̄

∂y
+ ik

∂R̄

∂y

}
, (B.2)

∂φ′

∂z
= φ′

{
− 1

R̄

∂R̄

∂z
+ ik

∂R̄

∂z

}
, (B.3)

∂2φ′

∂x2
=

∂φ′

∂x

{
− 1

R̄

∂R̄

∂x
+ ik(

∂R̄

∂x
−Mγ2)

}

+φ′




1

R̄2

(
∂R̄

∂x

)2

− 1

R̄

∂2R̄

∂x2
+ ik

∂2R̄

∂x2



 ,

(B.4)

∂2φ′

∂x∂y
=

∂φ′

∂y

{
− 1

R̄

∂R̄

∂x
+ ik(

∂R̄

∂x
−Mγ2)

}

+φ′
{

1

R̄2

∂R̄

∂x

∂R̄

∂y
− 1

R̄

∂2R̄

∂x∂y
+ ik

∂2R̄

∂x∂y

}
,

(B.5)

∂2φ′

∂x∂z
=

∂φ′

∂z

{
− 1

R̄

∂R̄

∂x
+ ik(

∂R̄

∂x
−Mγ2)

}

+φ′
{

1

R̄2

∂R̄

∂x

∂R̄

∂z
− 1

R̄

∂2R̄

∂x∂z
+ ik

∂2R̄

∂x∂z

}
,

(B.6)

where

∂R̄

∂x
=

γ3(x− xs)√
γ2(x− xs)2 + (y − ys)2 + (z − zs)2

, (B.7)

∂2R̄

∂x2
=

γ3

√
γ2(x− xs)2 + (y − ys)2 + (z − zs)2

− γ5(x− xs)
2

(
√

γ2(x− xs)2 + (y − ys)2 + (z − zs)2)3
,

(B.8)

∂2R̄

∂x∂y
= − γ3(x− xs)(y − ys)

(
√

γ2(x− xs)2 + (y − ys)2 + (z − zs)2)3
, (B.9)

∂2R̄

∂x∂z
= − γ3(x− xs)(z − zs)

(
√

γ2(x− xs)2 + (y − ys)2 + (z − zs)2)3
. (B.10)
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formulation G1A: – – 2 – – ; formulation G1: – - – ¦ – - – ; finite difference
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Fig. 8. Contour of the acoustic pressure at an instantaneous time for M = 0.5 and

λ = 2 m. The source is positioned at (0,0,0) and the boundary is −10 ≤ x ≤ 10,

0 ≤ y ≤ 20, z = −5

43



Fig. 9. Contour of ∂p′/∂x at an instantaneous time for M = 0.5 and λ = 2 m. The

source is positioned at (0,0,0) and the boundary is −10 ≤ x ≤ 10, 0 ≤ y ≤ 20,

z = −5

Fig. 10. Contour of ∂p′/∂y at an instantaneous time for M = 0.5 and λ = 2 m.

The source is positioned at (0,0,0) and the boundary is −10 ≤ x ≤ 10, 0 ≤ y ≤ 20,

z = −5
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Fig. 11. Contour of ∂p′/∂z at an instantaneous time for M = 0.5 and λ = 2 m.

The source is positioned at (0,0,0) and the boundary is −10 ≤ x ≤ 10, 0 ≤ y ≤ 20,

z = −5
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Fig. 13. Acoustic pressure and the components of the acoustic pressure gradient for

the HART-I rotor operating in a BVI flight condition. (a) total acoustic pressure

(b) ∂p′/∂x (c) ∂p′/∂y (d) ∂p′/∂z; finite difference method: —— ; formulation G1A:

– – 2 – – ; formulation G1: – - –¦– - – .
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Table 1

Comparison of computational time for the HART rotor with permeable surface

Formulation 1A Formulation G1A Formulation G1 Finite Difference Method

11.5 (s) 31.7 (s) 49.4 (s) 79.0 (s)
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